Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Active Learning Methodology in LLMs Fine-Tuning

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Active Learning Methodology in LLMs Fine-Tuning / P. Ceravolo, F. Mohammadi, M.A. Tamborini (PROCEEDINGS OF THE ... IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (CSR)). - In: Proceedings of the 2024 IEEE International Conference on Cyber Security and Resilience (CSR) / [a cura di] S. Shiaeles, N. Kolokotronis, E. Bellini. - [s.l] : Institute of Electrical and Electronics Engineers Inc., 2024. - ISBN 979-8-3503-7536-7. - pp. 743-749 (( convegno IEEE International Conference on Cyber Security and Resilience, CSR tenutosi a London nel 2024 [10.1109/csr61664.2024.10679450].
Abstract:
Active learning (AL) presents a valuable approach for fine-tuning large language models (LLMs) by optimizing the selection of training data to enhance model performance. This study introduces a methodology integrating human expertise and synthetic data generation to create robust datasets. Our focus is on addressing gender bias in Italian job advertisements, aiming to improve LLM accuracy in identifying discriminatory language. The method-ology involves a multi-step process: constructing a representative seed dataset, expanding it with synthetically generated data, and iteratively refining the model through fine-tuning loops. Preliminary results demonstrate the potential of AL in reducing the annotation workload while maintaining high performance in bias detection tasks. Future work will extend this approach to other discrimination categories and linguistic variations.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
P. Ceravolo, F. Mohammadi, M.A. Tamborini
Autori di Ateneo:
CERAVOLO PAOLO ( autore )
MOHAMMADI FATEMEH ( autore )
TAMBORINI MARTA ANNAMARIA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1119050
Titolo del libro:
Proceedings of the 2024 IEEE International Conference on Cyber Security and Resilience (CSR)
Progetto:
MUSA - Multilayered Urban Sustainability Actiona
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0