Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Possible enhancement of the superconducting Tc due to sharp Kohn-like soft phonon anomalies

Articolo
Data di Pubblicazione:
2023
Citazione:
Possible enhancement of the superconducting Tc due to sharp Kohn-like soft phonon anomalies / C. Jiang, E. Beneduce, M. Baggioli, C. Setty, A. Zaccone. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 35:16(2023 Feb 24), pp. 164003.1-164003.14. [10.1088/1361-648x/acbd0a]
Abstract:
Phonon softening is a ubiquitous phenomenon in condensed matter systems which is often associated with charge density wave (CDW) instabilities and anharmonicity. The interplay between phonon softening, CDW and superconductivity is a topic of intense debate. In this work, the effects of anomalous soft phonon instabilities on superconductivity are studied based on a recently developed theoretical framework that accounts for phonon damping and softening within the Migdal-Eliashberg theory. Model calculations show that the phonon softening in the form of a sharp dip in the phonon dispersion relation, either acoustic or optical (including the case of Kohn-type anomalies typically associated with CDW), can cause a manifold increase of the electron-phonon coupling constant lambda. This, under certain conditions, which are consistent with the concept of optimal frequency introduced by Bergmann and Rainer, can produce a large increase of the superconducting transition temperature T-c. In summary, our results suggest the possibility of reaching high-temperature superconductivity by exploiting soft phonon anomalies restricted in momentum space.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
charge density wave; phonon softening; superconductivity;
Elenco autori:
C. Jiang, E. Beneduce, M. Baggioli, C. Setty, A. Zaccone
Autori di Ateneo:
ZACCONE ALESSIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1107846
Progetto:
Solving the multi-scale problem in materials mechanics: a pathway to chemical design (Multimech)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0