Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Generalized Langevin equation with shear flow and its fluctuation-dissipation theorems derived from a Caldeira-Leggett Hamiltonian

Articolo
Data di Pubblicazione:
2023
Citazione:
Generalized Langevin equation with shear flow and its fluctuation-dissipation theorems derived from a Caldeira-Leggett Hamiltonian / S. Pelargonio, A. Zaccone. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 107:6(2023), pp. 064102.1-064102.16. [10.1103/physreve.107.064102]
Abstract:
We provide a first-principles derivation of the Langevin equation with shear flow and its corresponding fluctuation-dissipation theorems. Shear flow of simple fluids has been widely investigated by numerical sim-ulations. Most studies postulate a Markovian Langevin equation with a simple shear drag term in the manner of Stokes. However, this choice has never been justified from first principles. We start from a particle-bath system described by a classical Caldeira-Leggett Hamiltonian modified by adding a term proportional to the strain-rate tensor according to Hoover's DOLLS method, and we derive a generalized Langevin equation for the sheared system. We then compute, analytically, the noise time-correlation functions in different regimes. Based on the intensity of the shear rate, we can distinguish between close-to-equilibrium and far-from-equilibrium states. According to the results presented here, the standard, simple, and Markovian form of the Langevin equation with shear flow postulated in the literature is valid only in the limit of extremely weak shear rates compared to the effective vibrational temperature of the bath. For even marginally higher shear rates, the (generalized) Langevin equation is strongly non-Markovian, and nontrivial fluctuation-dissipation theorems are derived.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
S. Pelargonio, A. Zaccone
Autori di Ateneo:
ZACCONE ALESSIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1107844
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1107844/2556395/2302.03982v1.pdf
Progetto:
Solving the multi-scale problem in materials mechanics: a pathway to chemical design (Multimech)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore PHYS-04/A - Fisica teorica della materia, modelli, metodi matematici e applicazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0