Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A Sharded Blockchain Architecture for Healthcare Data

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
A Sharded Blockchain Architecture for Healthcare Data / J.Z. Shahid, S. Cimato, Z. Muhammad - In: COMPSAC / [a cura di] H. Shahriar, H. Ohsaki, M. Sharmin, D. Towey, AKM J. A. Majumder Yoshiaki Hori, J.-J. Yang, M. Takemoto, N. Sakib, R. Banno, S. Iqbal Ahamed. - [s.l] : Institute of Electrical and Electronics Engineers (IEEE), 2024. - ISBN 979-8-3503-7696-8. - pp. 1794-1799 (( Intervento presentato al 48. convegno Annual Computers, Software, and Applications Conference : 02-04 July tenutosi a Osaka (Japan) nel 2024 [10.1109/compsac61105.2024.00283].
Abstract:
The application of machine learning (ML) tech- niques to electronic health records (EHR) is gaining more and more attention as a method to extract valuable information that has the potential to enhance the decision-making process within the healthcare domain. A useful approach comes from the fed- erated learning (FL) scenario, which facilitates the decentralised training of machine learning models using datasets that are stored locally, hence eliminating the necessity of data aggregation on a central server. Federated learning also ensures data privacy because the federated devices do not share the actual data and store it locally. It becomes a useful tool when integrated with blockchain technology, which provides some properties such as immutability and traceability that are useful to enhance the security of such applications. With the growing use of IoT healthcare (IoHT) devices, it is becoming challenging to manage them centrally and ensuring the healthcare data privacy. In this work, we propose an architecture to address the scalability issue related to the healthcare data management for federated learning networks with a sharding-based blockchain technique. We discuss some basic properties and report some results also coming from the implementation in Hyperledger Fabric.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Blockchain; Data Security; Federated Learning; Healthcare; Scalability; Sharding;
Elenco autori:
J.Z. Shahid, S. Cimato, Z. Muhammad
Autori di Ateneo:
CIMATO STELVIO ( autore )
SHAHID JAHAN ZEB ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1104748
Titolo del libro:
COMPSAC
Progetto:
SEcurity and RIghts in the CyberSpace (SERICS)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore IINF-05/A - Sistemi di elaborazione delle informazioni

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0