Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Classical solutions to the soap film capillarity problem for plane boundaries

Articolo
Data di Pubblicazione:
2025
Citazione:
Classical solutions to the soap film capillarity problem for plane boundaries / G. Bevilacqua, S. Stuvard, B. Velichkov. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - 392:(2025 Jun 14), pp. 4607-4659. [10.1007/s00208-025-03172-z]
Abstract:
We study the soap film capillarity problem, in which soap films are modeled as sets of least perimeter among those having prescribed (small) volume and satisfying a topological spanning condition. When the given boundary is the closed tubular neighborhood in $\mathbb{R}^3$ of a smooth Jordan curve (or, more generally, the closed tubular neighborhood in $\mathbb{R}^d$ of a smooth embedding of $\mathbb{S}^{d-2}$ in a hyperplane), we prove existence and uniqueness of classical minimizers, for which the collapsing phenomenon does not occur. We show that the boundary of the unique minimizer is the union of two symmetric smooth normal graphs over a portion of the plane; the graphs have positive constant mean curvature bounded linearly in terms of the volume parameter, and meet the boundary of the tubular neighbourhood orthogonally. Moreover, we prove uniform bounds on the sectional curvatures in order to show that the boundaries of solutions corresponding to varying volumes are ordered monotonically and produce a foliation of space by constant mean curvature hypersurfaces.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
geometry of soap films; minimal surfaces; capillarity theory; collapsing phenomena;
Elenco autori:
G. Bevilacqua, S. Stuvard, B. Velichkov
Autori di Ateneo:
STUVARD SALVATORE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1100928
Progetto:
Geometric Measure Theory: Structure of Singular Measures, Regularity Theory and Applications in the Calculus of Variations
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/05 - Analisi Matematica

Settore MATH-03/A - Analisi matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0