Data di Pubblicazione:
2024
Citazione:
A quantitative version of the Gidas-Ni-Nirenberg Theorem / G. Ciraolo, M. Cozzi, M. Perugini, L. Pollastro. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 287:9(2024 Nov), pp. 110585.1-110585.29. [10.1016/j.jfa.2024.110585]
Abstract:
A celebrated result by Gidas, Ni & Nirenberg asserts that classical positive solutions to semilinear equations -Delta u = f (u) in a ball vanishing at the boundary must be radial and radially decreasing. In this paper we consider small perturbations of this equation and study the quantitative stability counterpart of this result. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Gidas-Ni-Nirenberg Theorem; Semilinear problem; Approximate symmetry
Elenco autori:
G. Ciraolo, M. Cozzi, M. Perugini, L. Pollastro
Link alla scheda completa:
Link al Full Text: