Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Unprecedented selectivity for homologous lectin targets: differential targeting of the viral receptors L-SIGN and DC-SIGN

Articolo
Data di Pubblicazione:
2024
Citazione:
Unprecedented selectivity for homologous lectin targets: differential targeting of the viral receptors L-SIGN and DC-SIGN / C. Delaunay, S. Pollastri, M. Thépaut, G. Cavazzoli, L. Belvisi, C. Bouchikri, N. Labiod, F. Lasala, A. Gimeno, A. Franconetti, J. Jiménez-Barbero, A. Ardá, R. Delgado, A. Bernardi, F. Fieschi. - In: CHEMICAL SCIENCE. - ISSN 2041-6520. - (2024), pp. 1-15. [Epub ahead of print] [10.1039/d4sc02980a]
Abstract:
DC-SIGN (CD209) and L-SIGN (CD209L) are two C-type lectin receptors (CLRs) that facilitate SARS-CoV-2 infections as viral co-receptors. SARS-CoV-2 manipulates both DC-SIGN and L-SIGN for enhanced infection, leading to interest in developing receptor antagonists. Despite their structural similarity (82% sequence identity), they function differently. DC-SIGN, found in dendritic cells, shapes the immune response by recognizing pathogen-associated carbohydrate patterns. In contrast, L-SIGN, expressed in airway epithelial endothelial cells, is not directly involved in immunity. COVID-19's primary threat is the hyperactivation of the immune system, potentially reinforced if DC-SIGN engages with exogenous ligands. Therefore, L-SIGN, co-localized with ACE2-expressing cells in the respiratory tract, is a more suitable target for anti-adhesion therapy. However, designing a selective ligand for L-SIGN is challenging due to the high sequence identity of the Carbohydrate Recognition Domains (CRDs) of the two lectins. We here present Man84, a mannose ring modified with a methylene guanidine triazole at position 2. It binds L-SIGN with a KD of 12.7μM ± 1 μM (ITC) and is the first known L-SIGN selective ligand, showing 50-fold selectivity over DC-SIGN (SPR). The X-ray structure of the L-SIGN CRD/Man84 complex reveals the guanidinium group's role in achieving steric and electrostatic complementarity with L-SIGN. This allows us to trace the source of selectivity to a single amino acid difference between the two CRDs. NMR analysis confirms the binding mode in solution, highlighting Man84's conformational selection upon complex formation. Dimeric versions of Man84 achieve additional selectivity and avidity in the low nanomolar range. These compounds selectively inhibit L-SIGN dependent trans-infection by SARS-CoV-2 and Ebola virus. Man84 and its dimeric constructs display the best affinity and avidity reported to date for low-valency glycomimetics targeting CLRs. They are promising tools for competing with SARS-CoV-2 anchoring in the respiratory tract and have potential for other medical applications.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
C. Delaunay, S. Pollastri, M. Thépaut, G. Cavazzoli, L. Belvisi, C. Bouchikri, N. Labiod, F. Lasala, A. Gimeno, A. Franconetti, J. Jiménez-Barbero, A. Ardá, R. Delgado, A. Bernardi, F. Fieschi
Autori di Ateneo:
BELVISI LAURA ( autore )
BERNARDI ANNA ( autore )
CAVAZZOLI GIANLUCA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1093808
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1093808/2521252/ChemSci-2024.pdf
Progetto:
One Health Basic and Translational Research Actions addressing Unmet Need on Emerging Infectious Diseases (INF-ACT)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore CHIM/06 - Chimica Organica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0