Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Insights into different marine aquaculture infrastructures from a life cycle perspective

Articolo
Data di Pubblicazione:
2024
Citazione:
Insights into different marine aquaculture infrastructures from a life cycle perspective / L. Rossi, M. Zoli, F. Capoccioni, D. Pulcini, A. Martini, J. Bacenetti. - In: AQUACULTURAL ENGINEERING. - ISSN 0144-8609. - 107:(2024 Nov), pp. 102462.1-102462.13. [10.1016/j.aquaeng.2024.102462]
Abstract:
Aquaculture facilities represent an often-neglected process in environmental impact studies. This study focus on the environmental impact assessment of alternative net materials in Mediterranean marine aquaculture. A Life Cycle Assessment was conducted using primary and secondary data from specific databases and literature. Three baseline scenarios were compared: copper alloy net cages with 100 % of recycled material (CAN100), 75 % of recycled material (CAN75), and polyethylene net (PEN) System boundaries include manufacturing and disposal of cages, nets, and mooring system. The use and emissions of antifouling paints and CAN were considered. Sensitivity analysis of the most impacting sub-processes and Uncertainty analysis were also conducted. The use of CAN is advantageous in terms of environmental impact, but only considering a complete recyclability of the net at the end of its service life. Moreover, when considering a reduced service life of the PEN due to the detrimental effect of biofouling, the advantage of the CAN is even more evident. To counteract the negative effect of biofouling, copper-based antifouling paints are generally used in marine aquaculture. These products are a main environmental hotspot in PEN systems. Therefore, a higher consumption of such products could determine an environmental burden shifting from CAN to PEN ones. So far, CAN are not widespread in the aquaculture industry, mainly due to the high cost of initial investment compared to traditional PEN. Considering operational and environmental advantages, CAN cages could represent an affordable and resilient solution for aquaculture enhancing environmental, economic, and social performances of this industry.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Biofoluing, copper-alloy net, antifouling paint;
Elenco autori:
L. Rossi, M. Zoli, F. Capoccioni, D. Pulcini, A. Martini, J. Bacenetti
Autori di Ateneo:
BACENETTI JACOPO ( autore )
ZOLI MICHELE ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1131876
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1131876/2626688/13.%20Rossi%20et%20al.,%202024%20-%20Insights%20into%20different%20marine%20aquaculture%20infrastructures%20from%20a%20life.pdf
Progetto:
Self-sufficient Integrated Multi-Trophic AquaPonic systems for improving food production sustainability and brackish water use and recycling (SIMTAP)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (6)


Settore AGR/09 - Meccanica Agraria

Settore AGR/10 - Costruzioni Rurali e Territorio Agroforestale

Settore AGR/20 - Zoocolture

Settore AGRI-04/B - Meccanica agraria

Settore AGRI-04/C - Costruzioni rurali e territorio agroforestale

Settore AGRI-09/D - Zoocolture
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0