Data di Pubblicazione:
2024
Citazione:
Sharp pinching theorems for complete submanifolds in the sphere / M. Magliaro, L. Mari, F. Roing, A. Savas-Halilaj. - In: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK. - ISSN 1435-5345. - 814:(2024), pp. 117-134. [10.1515/crelle-2024-0042]
Abstract:
For every complete and minimally immersed submanifold f: M n → S n + p f\colon M^{n}\to\mathbb{S}^{n+p} whose second fundamental form satisfies | A | 2 ≤ n p / (2 p - 1) \lvert A\rvert^{2}\leq np/(2p-1), we prove that it is either totally geodesic, or (a covering of) a Clifford torus or a Veronese surface in S 4 \mathbb{S}^{4}, thereby extending the well-known results by Simons, Lawson and Chern, do Carmo & Kobayashi from compact to complete M n M^{n}. We also obtain the corresponding result for complete hypersurfaces with non-vanishing constant mean curvature, due to Alencar & do Carmo in the compact case, under the optimal bound on the umbilicity tensor. In dimension n ≤ 6 n\leq 6, a pinching theorem for complete higher-codimensional submanifolds with non-vanishing parallel mean curvature is proved, partly generalizing previous work by Santos. Our approach is inspired by the conformal method of Fischer-Colbrie, Shen & Ye and Catino, Mastrolia & Roncoroni.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M. Magliaro, L. Mari, F. Roing, A. Savas-Halilaj
Link alla scheda completa:
Link al Full Text: