Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Data-driven recombination detection in viral genomes

Articolo
Data di Pubblicazione:
2024
Citazione:
Data-driven recombination detection in viral genomes / T. Alfonsi, A. Bernasconi, M. Chiara, S. Ceri. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 15:1(2024), pp. 3313.1-3313.16. [10.1038/s41467-024-47464-5]
Abstract:
Recombination is a key molecular mechanism for the evolution and adaptation of viruses. The first recombinant SARS-CoV-2 genomes were recognized in 2021; as of today, more than ninety SARS-CoV-2 lineages are designated as recombinant. In the wake of the COVID-19 pandemic, several methods for detecting recombination in SARS-CoV-2 have been proposed; however, none could faithfully confirm manual analyses by experts in the field. We hereby present RecombinHunt, an original data-driven method for the identification of recombinant genomes, capable of recognizing recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints with high accuracy and within reduced turn-around times. ReconbinHunt shows high specificity and sensitivity, compares favorably with other state-of-the-art methods, and faithfully confirms manual analyses by experts. RecombinHunt identifies recombinant viral genomes from the recent monkeypox epidemic in high concordance with manually curated analyses by experts, suggesting that our approach is robust and can be applied to any epidemic/pandemic virus.Here, the authors present RecombinHunt, a computational method based on big data analysis, that enhances community-based detection of recombinant viral lineages.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
T. Alfonsi, A. Bernasconi, M. Chiara, S. Ceri
Autori di Ateneo:
CHIARA MATTEO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1115570
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1115570/2579603/s41467-024-47464-5.pdf
Progetto:
SENSIBLE: Small-data Early warNing System for viral pathogens In puBLic hEalth
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIOS-08/A - Biologia molecolare
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0