scGSECA:identification of altered biological processes in single-cell RNA-sequencing data by discretization of expression profiles
Altro Prodotto di Ricerca
Data di Pubblicazione:
2023
Citazione:
scGSECA:identification of altered biological processes in single-cell RNA-sequencing data by discretization
of expression profiles / S. Perrone, S. Peirone, A. Lauria, F. Priante, M. Caselle, S. Oliviero, M. Cereda. ((Intervento presentato al convegno The conceptual power of single cell biology tenutosi a San Diego nel 2023.
Abstract:
Bimodality of the distribution of expression levels has been observed in bulk RNA-seq. Two possible explanations underpin this kind of partitioning and refer to opposite paradigmatic models. At single-cell level, FISH experiments
detected lowly and highly expressed genes in the same cells. We aimed at clarifying whether the bimodality observed in bulk RNA-seq data is a "herd effect" or a specific feature of expression profiles. Here we propose a cell-centric rather than gene-centric view to characterize expression profiles in single-cell RNA-seq (scRNA-seq) experiments produced by the high sensitivity protocol Smart-seq2. scGSECA is a high sensitivity tool for the identification of altered gene sets. Among the tested GSA methods scGSECA stands out especially in large cohorts of cells with subtle alterations with respect to competitor methods
Tipologia IRIS:
14 - Intervento a convegno non pubblicato
Elenco autori:
S. Perrone, S. Peirone, A. Lauria, F. Priante, M. Caselle, S. Oliviero, M. Cereda
Link alla scheda completa: