Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Resource-Limited Automated Ki67 Index Estimation in Breast Cancer

Contributo in Atti di convegno
Data di Pubblicazione:
2024
Citazione:
Resource-Limited Automated Ki67 Index Estimation in Breast Cancer / J. Gliozzo, G. Marinò, A. Bonometti, M. Frasca, D. Malchiodi - In: ICBRA '23: Proceedings of the 2023 10th International Conference on Bioinformatics Research and Applications[s.l] : ACM, 2024 Feb 27. - ISBN 979-8-4007-0815-2. - pp. 165-172 (( Intervento presentato al 10. convegno International Conference on Bioinformatics Research and Applications tenutosi a Barcelona nel 2023 [10.1145/3632047.3632072].
Abstract:
The prediction of tumor progression and chemotherapy response has been recently tackled exploiting Tumor Infiltrating Lymphocytes (TILs) and the nuclear protein Ki67 as prognostic factors. Recently, deep neural networks (DNNs) have been shown to achieve top results in estimating Ki67 expression and simultaneous determination of intratumoral TILs score in breast cancer cells. However, in the last ten years the extraordinary progress induced by deep models proliferated at least as much as their resource demand. The exorbitant computational costs required to query (and in some cases also to store) a deep model represent a strong limitation in resource-limited contexts, like that of IoT-based applications to support healthcare personnel. To this end, we propose a resource consumption-aware DNN for the effective estimate of the percentage of Ki67-positive cells in breast cancer screenings. Our approach reduced up to 75% and 89% the usage of memory and disk space respectively, up to 1.5x the energy consumption, and preserved or improved the overall accuracy of a benchmark state-of-the-art solution. Encouraged by such positive results, we developed and structured the adopted framework so as to allow its general purpose usage, along with a public software repository to support its usage.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
tumor infiltrating lymphocytes; Ki67 protein; resource-limited learning; resource-limited devices; DNN compression; deep learning
Elenco autori:
J. Gliozzo, G. Marinò, A. Bonometti, M. Frasca, D. Malchiodi
Autori di Ateneo:
FRASCA MARCO ( autore )
MALCHIODI DARIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1034131
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1034131/2372552/icbra23.pdf
Titolo del libro:
ICBRA '23: Proceedings of the 2023 10th International Conference on Bioinformatics Research and Applications
Progetto:
Multi-criteria optimized data structures: from compressed indexes to learned indexes, and beyond
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore INFO-01/A - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0