Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

On the 1∕H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds

Articolo
Data di Pubblicazione:
2022
Citazione:
On the 1∕H-flow by p-Laplace approximation: new estimates via fake distances under Ricci lower bounds / L. Mari, M. Rigoli, A.G. Setti. - In: AMERICAN JOURNAL OF MATHEMATICS. - ISSN 0002-9327. - 144:3(2022 Jun), pp. 779-849. [10.1353/ajm.2022.0016]
Abstract:
In this paper we show the existence of weak solutions w:M→R of the inverse mean curvature flow starting from a relatively compact set (possibly, a point) on a large class of manifolds satisfying Ricci lower bounds. Under natural assumptions, we obtain sharp estimates for the growth of w and for the mean curvature of its level sets, that are well behaved with respect to Gromov-Hausdorff convergence. The construction follows R. Moser's approximation procedure via the p-Laplace equation, and relies on new gradient and decay estimates for p-harmonic capacity potentials, notably for the kernel Gp of Δp. These bounds, stable as p→1, are achieved by studying fake distances associated to capacity potentials and Green kernels. We conclude by investigating some basic isoperimetric properties of the level sets of w.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
L. Mari, M. Rigoli, A.G. Setti
Autori di Ateneo:
MARI LUCIANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1028831
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1028831/2359775/pLaplacian_AJM_conerratum_nocolor.pdf
Progetto:
Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore MAT/03 - Geometria

Settore MAT/05 - Analisi Matematica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0