Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments

Articolo
Data di Pubblicazione:
2023
Citazione:
Modeling Water Flow in Variably Saturated Porous Soils and Alluvial Sediments / M. Giudici. - In: SUSTAINABILITY. - ISSN 2071-1050. - 15:22(2023 Nov 08), pp. 15723.1-15723.16. [10.3390/su152215723]
Abstract:
The sustainable exploitation of groundwater resources is a multifaceted and complex problem, which is controlled, among many other factors and processes, by water flow in porous soils and sediments. Modeling water flow in unsaturated, non-deformable porous media is commonly based on a partial differential equation, which translates the mass conservation principle into mathematical terms. Such an equation assumes that the variation of the volumetric water content (θ) in the medium is balanced by the net flux of water flow, i.e., the divergence of specific discharge, if source/sink terms are negligible. Specific discharge is in turn related to the matric potential (h), through the non-linear Darcy–Buckingham law. The resulting equation can be rewritten in different ways, in order to express it as a partial differential equation where a single physical quantity is considered to be a dependent variable. Namely, the most common instances are the Fokker–Planck Equation (for θ), and the Richards Equation (for h). The other two forms can be given for generalized matric flux potential (Φ) and for hydraulic conductivity (K). The latter two cases are shown to limit the non-linearity to multiplicative terms for an exponential K-to-h relationship. Different types of boundary conditions are examined for the four different formalisms. Moreover, remarks given on the physico-mathematical properties of the relationships between K, h, and θ could be useful for further theoretical and practical studies.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
water flow; porous soils; porous alluvial sediments;
Elenco autori:
M. Giudici
Autori di Ateneo:
GIUDICI MAURO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1022982
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1022982/2342166/sustainability-15-15723.pdf
Progetto:
Assegnazione Dipartimenti di Eccellenza 2023-2027 - Dipartimento di SCIENZE DELLA TERRA "ARDITO DESIO"
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore GEO/12 - Oceanografia e Fisica dell'Atmosfera
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0