Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Explainability and interpretability concepts for edge AI systems

Capitolo di libro
Data di Pubblicazione:
2023
Citazione:
Explainability and interpretability concepts for edge AI systems / O. Vermesan, V. Piuri, F. Scotti, A. Genovese, R.D. Labati, P. Coscia - In: Advancing Edge Artificial Intelligence : System Contexts / [a cura di] O. Vermesan, D. Marples. - [s.l] : River Publishers, 2023. - ISBN 9788770041010. - pp. 197-227
Abstract:
The increased complexity of artificial intelligence (AI), machine learning (ML) and deep learning (DL) methods, models, and training data to satisfy industrial application needs has emphasised the need for AI model providing explainability and interpretability. Model Explainability aims to communicate the reasoning of AI/ML/DL technology to end users, while model interpretability focuses on in-powering model transparency so that users will understand precisely why and how a model generates its results. Edge AI, which combines AI, Internet of Things (IoT) and edge computing to enable real-time collection, processing, analytics, and decisionmaking, introduces new challenges to acheiving explainable and interpretable methods. This is due to the compromises among performance, constrained resources, model complexity, power consumption, and the lack of benchmarking and standardisation in edge environments. This chapter presents the state of play of AI explainability and interpretability methods and techniques, discussing different benchmarking approaches and highlighting the state-of-the-art development directions.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
edge AI; AI explainability; AI interpretability; explainable AI; XAI; trustworthy edge AI
Elenco autori:
O. Vermesan, V. Piuri, F. Scotti, A. Genovese, R.D. Labati, P. Coscia
Autori di Ateneo:
COSCIA PASQUALE ( autore )
DONIDA LABATI RUGGERO ( autore )
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1022711
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1022711/2363530/RP_9788770041010C9.pdf
Titolo del libro:
Advancing Edge Artificial Intelligence : System Contexts
Progetto:
Edge AI Technologies for Optimised Performance Embedded Processing (EdgeAI)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0