Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Estimation of the reliability parameter for a Poisson-exponential stress-strength model

Articolo
Data di Pubblicazione:
2023
Citazione:
Estimation of the reliability parameter for a Poisson-exponential stress-strength model / A. Barbiero. - In: INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT. - ISSN 0975-6809. - (2023), pp. 1-12. [Epub ahead of print] [10.1007/s13198-023-02212-8]
Abstract:
In this paper, we consider the problem of estimating the reliability parameter of a mixed-type stress-strength model, i.e., the probability R= P(X< Y) where X and Y are a discrete and a continuous random variable, respectively. We focus on the specific case of Poisson stress and exponential strength, deriving the expression of R and its maximum likelihood estimator (MLE) and its uniformly minimum-variance unbiased estimator (UMVUE), based on simple random samples independently drawn from X and Y. For the MLE, we are able to provide an expression for the cumulative distribution function, which allows us to compute its expected value, bias, and variance. We derive asymptotic properties of the MLE, which we exploit for constructing approximate confidence intervals based on different approaches. A simulation study empirically compares such estimators and provides advice for their correct use, which is also illustrated through an application to real data.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Exponential family; Interference theory; MLE; Profile likelihood; UMVUE;
Elenco autori:
A. Barbiero
Autori di Ateneo:
BARBIERO ALESSANDRO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1022392
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1022392/2338811/sn-article%202nd%20REVISION.pdf
Progetto:
Dipartimenti di Eccellenza 2018-2022 - Dipartimento di ECONOMIA, MANAGEMENT E METODI QUANTITATIVI
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore SECS-S/01 - Statistica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0