Data di Pubblicazione:
2024
Citazione:
Singular hermitian metrics and the decomposition theorem of Catanese, Fujita, and Kawamata / L. Lombardi, C. Schnell. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - 152:1(2024), pp. 137-146. [10.1090/proc/16625]
Abstract:
We prove that a torsion-free sheaf F endowed with a singular
hermitian metric with semi-positive curvature and satisfying the minimal ex-
tension property admits a direct-sum decomposition F ≃ U \oplus A where U is a
hermitian flat bundle and A is a generically ample sheaf. The result applies
to the case of direct images of relative pluricanonical bundles f_*(\omega_{X/Y}^{\otimes m}) under a surjective morphism f : X → Y of smooth projective varieties with m ≥ 2. This extends previous results of Fujita, Catanese–Kawamata, and Iwai.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
L. Lombardi, C. Schnell
Link alla scheda completa:
Link al Full Text: