Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Iris Reflection Segmentation from Ocular Images Acquired in Uncontrolled and Uncooperative Conditions

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
Iris Reflection Segmentation from Ocular Images Acquired in Uncontrolled and Uncooperative Conditions / R. Donida Labati, V. Piuri, F. Rundo, F. Scotti (... IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS). - In: 2023 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)[s.l] : IEEE, 2023. - ISBN 979-8-3503-3636-8. - pp. 1-6 (( convegno CIVEMSA tenutosi a Gammarth nel 2023 [10.1109/CIVEMSA57781.2023.10231007].
Abstract:
The segmentation of reflections from the iris region is a relevant task for biometric systems, human-machine inter- action technologies, and photo editing applications. This task is particularly complex for ocular images acquired from unco- operative users in uncontrolled illumination and environmental conditions. Furthermore, to the best of our knowledge, all of the studies in the literature on methods specifically designed to detect reflections in the iris texture are based on algorithmic approaches. In this paper, we present the first study on deep neural networks for segmenting reflection regions from iris images. Specifically, we propose a modified version of the U-Net architecture based on an encoder (downsampler) characterized by a relatively low computational complexity, and designed with the aim of being applied on edge devices. Experiments have been performed for a dataset of 3,286 ocular images acquired from websites and social media in completely uncontrolled and uncooperative conditions. The obtained results prove that our proposed method can accurately segment the iris reflections for particularly challenging images. A detailed qualitative analysis also confirm the robustness of our method for non-ideal application contexts. Furthermore, experiments show that our method can increase the accuracy of state-of-the-art iris segmentation techniques based on deep neural networks.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Reflections; iris; segmentation; deep learning; edge computing; biometrics
Elenco autori:
R. Donida Labati, V. Piuri, F. Rundo, F. Scotti
Autori di Ateneo:
DONIDA LABATI RUGGERO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/1000230
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/1000230/2282793/CIVEMSA2023_Iris.pdf
Titolo del libro:
2023 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)
Progetto:
SEcurity and RIghts in the CyberSpace (SERICS)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0