Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Strutture

A Critical Analysis of Classifier Selection in Learned Bloom Filters: The Essentials

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
A Critical Analysis of Classifier Selection in Learned Bloom Filters: The Essentials / D. Malchiodi, D. Raimondi, G. Fumagalli, R. Giancarlo, M. Frasca (COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE). - In: Engineering Applications of Neural Networks / [a cura di] L. Iliadis, I. Maglogiannis, S. Alonso, C. Jayne, E. Pimenidis. - [s.l] : Springer Nature, 2023. - ISBN 978-3-031-34203-5. - pp. 47-61 (( Intervento presentato al 24. convegno International Conference, EAAAI/EANN tenutosi a León nel 2023 [10.1007/978-3-031-34204-2_5].
Abstract:
It is well known that Bloom Filters have a performance essentially independent of the data used to query the filters themselves, but this is no more true when considering Learned Bloom Filters. In this work we analyze how the performance of such learned data structures is impacted by the classifier chosen to build the filter and by the complexity of the dataset used in the training phase. Such analysis, which has not been proposed so far in the literature, involves the key performance indicators of space efficiency, false positive rate, and reject time. By screening various implementations of Learned Bloom Filters, our experimental study highlights that only one of these implementations exhibits higher robustness to classifier performance and to noisy data, and that only two families of classifiers have desirable properties in relation to the previous performance indicators.
Tipologia IRIS:
03 - Contributo in volume
Keywords:
Learned Bloom filters; Data complexity; Learned data structures
Elenco autori:
D. Malchiodi, D. Raimondi, G. Fumagalli, R. Giancarlo, M. Frasca
Autori di Ateneo:
FRASCA MARCO ( autore )
MALCHIODI DARIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/981848
Titolo del libro:
Engineering Applications of Neural Networks
Progetto:
Multi-criteria optimized data structures: from compressed indexes to learned indexes, and beyond
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0