Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

DL4ALL: Multi-task cross-dataset transfer learning for Acute Lymphoblastic Leukemia detection

Articolo
Data di Pubblicazione:
2023
Citazione:
DL4ALL: Multi-task cross-dataset transfer learning for Acute Lymphoblastic Leukemia detection / A. Genovese, V. Piuri, K.N. Plataniotis, F. Scotti. - In: IEEE ACCESS. - ISSN 2169-3536. - 11:(2023), pp. 65222-65237. [10.1109/ACCESS.2023.3289219]
Abstract:
Methods for the detection of Acute Lymphoblastic (or Lymphocytic) Leukemia (ALL) are increasingly considering Deep Learning (DL) due to its high accuracy in several elds, including medical imaging. In most cases, such methods use transfer learning techniques to compensate for the limited availability of labeled data. However, current methods for ALL detection use traditional transfer learning, which requires the models to be fully trained on the source domain, then ne- tuned on the target domain, with the drawback of possibly over tting the source domain and reducing the generalization capability on the target domain. To overcome this drawback and increase the classi cation accuracy that can be obtained using transfer learning, in this paper we propose our method named Deep Learning for Acute Lymphoblastic Leukemia (DL4ALL), a novel multi-task learning DL model for ALL detection, trained using a cross-dataset transfer learning approach. The method adapts an existing model into a multi-task classi cation problem, then trains it using transfer learning procedures that consider both source and target databases at the same time, interleaving batches from the two domains even when they are signi cantly di erent. The proposed DL4ALL represents the rst work in the literature using a multi-task cross-dataset transfer learning procedure for ALL detection. Results on a publicly-available ALL database con rm the validity of our approach, which achieves a higher accuracy in detecting ALL with respect to existing methods, even when not using manual labels for the source domain.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Acute Lymphoblastic Leukemia (ALL); Deep Learning (DL); Convolutional Neural Networks (CNN);
Elenco autori:
A. Genovese, V. Piuri, K.N. Plataniotis, F. Scotti
Autori di Ateneo:
GENOVESE ANGELO ( autore )
PIURI VINCENZO ( autore )
SCOTTI FABIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/978628
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/978628/2247587/DL4ALL_Multi-Task_Cross-Dataset_Transfer_Learning_for_Acute_Lymphoblastic_Leukemia_Detection(2).pdf
Progetto:
SEcurity and RIghts in the CyberSpace (SERICS)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/05 - Sistemi di Elaborazione delle Informazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0