Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Nonstochastic Contextual Combinatorial Bandits

Contributo in Atti di convegno
Data di Pubblicazione:
2023
Citazione:
Nonstochastic Contextual Combinatorial Bandits / L. Zierahn, D. van der Hoeven, N. Cesa Bianchi, G. Neu (PROCEEDINGS OF MACHINE LEARNING RESEARCH). - In: International Conference on Artificial Intelligence and Statistics / [a cura di] F. Ruiz, J. Dy, J.-W. van de Meent. - [s.l] : PMLR, 2023. - pp. 8771-8813 (( convegno International Conference on Artificial Intelligence and Statistics tenutosi a Valencia nel 2023.
Abstract:
We study a contextual version of online combinatorial optimisation with full and semi-bandit feedback. In this sequential decision-making problem, an online learner has to select an action from a combinatorial decision space after seeing a vector-valued context in each round. As a result of its action, the learner incurs a loss that is a bilinear function of the context vector and the vector representation of the chosen action. We consider two natural versions of the problem: semi-bandit where the losses are revealed for each component appearing in the learner’s combinatorial action, and full-bandit where only the total loss is observed. We design computationally efficient algorithms based on a new loss estimator that takes advantage of the special structure of the problem, and show regret bounds order $\sqrt{T}$ with respect to the time horizon. The bounds demonstrate polynomial scaling with the relevant problem parameters which is shown to be nearly optimal. The theoretical results are complemented by a set of experiments on simulated data.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
L. Zierahn, D. van der Hoeven, N. Cesa Bianchi, G. Neu
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/969059
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/969059/2197758/zierahn23a.pdf
Titolo del libro:
International Conference on Artificial Intelligence and Statistics
Progetto:
Algorithms, Games, and Digital Markets (ALGADIMAR)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0