Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

HaploCoV: unsupervised classification and rapid detection of novel emerging variants of SARS-CoV-2

Articolo
Data di Pubblicazione:
2023
Citazione:
HaploCoV: unsupervised classification and rapid detection of novel emerging variants of SARS-CoV-2 / M. Chiara, D.S. Horner, E. Ferrandi, C. Gissi, G. Pesole. - In: COMMUNICATIONS BIOLOGY. - ISSN 2399-3642. - 6:1(2023 Apr 22), pp. 443.1-443.15. [10.1038/s42003-023-04784-4]
Abstract:
Accurate and timely monitoring of the evolution of SARS-CoV-2 is crucial for identifying and tracking potentially more transmissible/virulent viral variants, and implement mitigation strategies to limit their spread. Here we introduce HaploCoV, a novel software framework that enables the exploration of SARS-CoV-2 genomic diversity through space and time, to identify novel emerging viral variants and prioritize variants of potential epidemiological interest in a rapid and unsupervised manner. HaploCoV can integrate with any classification/nomenclature and incorporates an effective scoring system for the prioritization of SARS-CoV-2 variants. By performing retrospective analyses of more than 11.5 M genome sequences we show that HaploCoV demonstrates high levels of accuracy and reproducibility and identifies the large majority of epidemiologically relevant viral variants - as flagged by international health authorities - automatically and with rapid turn-around times.Our results highlight the importance of the application of strategies based on the systematic analysis and integration of regional data for rapid identification of novel, emerging variants of SARS-CoV-2. We believe that the approach outlined in this study will contribute to relevant advances to current and future genomic surveillance methods.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M. Chiara, D.S. Horner, E. Ferrandi, C. Gissi, G. Pesole
Autori di Ateneo:
CHIARA MATTEO ( autore )
FERRANDI ERIKA ( autore )
HORNER DAVID STEPHEN ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/967644
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/967644/2193609/s42003-023-04784-4.pdf
Progetto:
Connect and align ELIXIR Nodes to deliver sustainable FAIR life-science data management services (ELIXIR-CONVERGE)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore BIO/11 - Biologia Molecolare
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0