Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Sentinels and twins : effective integrity assessment for distributed computation

Articolo
Data di Pubblicazione:
2023
Citazione:
Sentinels and twins : effective integrity assessment for distributed computation / S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, R. Sassi. - In: IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - 34:1(2023 Jan 01), pp. 108-122. [10.1109/TPDS.2022.3215863]
Abstract:
Distributed computing supports large scale and data-intensive computations with the cooperation of a multitude of parties, each responsible for a portion of the workload. Such parties are often not fully reliable and may return incorrect results. In this article, we address the problem of assessing the integrity of the computation results. We provide a comprehensive characterization of two techniques, sentinels and twins, evaluating their effectiveness and synergy. Sentinels are pre-computed tasks whose result is known apriori, and enable checking returned results against a ground truth. Twins are replicated tasks assigned to different workers, and enable cross-checking returned results for a same task. The analysis considers many questions that arise in the design of a concrete integrity assessment strategy and identifies the parameters that have a critical impact on the overall protection. Our model enables to tune the integrity controls so to achieve best effectiveness. The model can be applied to a variety of scenarios and offers guidelines that can find extensive application.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
distributed data computation; probabilistic integrity guarantees; sentinels; twins
Elenco autori:
S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, R. Sassi
Autori di Ateneo:
DE CAPITANI DI VIMERCATI SABRINA ( autore )
FORESTI SARA ( autore )
SAMARATI PIERANGELA ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/953164
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/953164/2199417/dfjpss-tpds2023.pdf
Progetto:
Machine Learning-based, Networking and Computing Infrastructure Resource Management of 5G and beyond Intelligent Networks (MARSAL)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0