Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

A multi-layer deep learning approach for malware classification in 5G-enabled IIoT

Articolo
Data di Pubblicazione:
2023
Citazione:
A multi-layer deep learning approach for malware classification in 5G-enabled IIoT / I. Ahmed, M. Anisetti, A. Ahmad, G. Jeon. - In: IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. - ISSN 1551-3203. - 19:2(2023 Feb), pp. 1495-1503. [10.1109/TII.2022.3205366]
Abstract:
5G is becoming the foundation for the Industrial Internet of Things (IIoT) enabling more effective low-latency integration of artificial intelligence and cloud computing in a framework of a smart and intelligent IIoT ecosystems enhancing the entire industrial procedure. However, it also increases the functional complexities of the underlying control system and introduces new powerful attack vectors leading to severe security and data privacy risks. Malware attacks are starting targeting weak but highly connected IoT devices showing the importance of security and privacy in this scenario. This article designs a 5G-enabled system, consisted in a deep learning based architecture aimed to classify malware attacks on the IIoT. Our methodology is based on an image representation of the malware and a convolutional neural networks that is designed to differentiate various malware attacks. The proposed architecture extracts complementary discriminative features by combining multiple layers achieving 97% of accuracy
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
5G; cybersecurity; deep learning; Industrial Internet of Things (IoT); malware detection
Elenco autori:
I. Ahmed, M. Anisetti, A. Ahmad, G. Jeon
Autori di Ateneo:
ANISETTI MARCO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/947528
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/947528/2106445/FINAL%20VERSION.pdf
Progetto:
Cyber security cOmpeteNce fOr Research anD Innovation (CONCORDIA)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0