Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Multitask Online Mirror Descent

Articolo
Data di Pubblicazione:
2022
Citazione:
Multitask Online Mirror Descent / N. Cesa Bianchi, P. Laforgue, A. Paudice, M. Pontil. - In: TRANSACTIONS ON MACHINE LEARNING RESEARCH. - ISSN 2835-8856. - 2022:9(2022 Sep), pp. 1-30.
Abstract:
We introduce and analyze MT-OMD, a multitask generalization of Online Mirror Descent (OMD) which operates by sharing updates between tasks. We prove that the regret of MT-OMD is of order p 1 + 2(N − 1)p T, where 2 is the task variance according to the geometry induced by the regularizer, N is the number of tasks, and T is the time horizon. Whenever tasks are similar, that is 2 1, our method improves upon the p NT bound obtained by running independent OMDs on each task. We further provide a matching lower bound, and show that our multitask extensions of Online Gradient Descent and Exponentiated Gradient, two major instances of OMD, enjoy closed-form updates, making them easy to use in practice. Finally, we present experiments which support our theoretical findings.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
N. Cesa Bianchi, P. Laforgue, A. Paudice, M. Pontil
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/939314
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/939314/2164428/198_multitask_online_mirror_descen(1).pdf
Progetto:
European Learning and Intelligent Systems Excellence (ELISE)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0