Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Style-based quantum generative adversarial networks for Monte Carlo events

Articolo
Data di Pubblicazione:
2022
Citazione:
Style-based quantum generative adversarial networks for Monte Carlo events / C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D.M. Grabowska, S. Carrazza. - In: QUANTUM. - ISSN 2521-327X. - 6:(2022 Aug 17), pp. 777.1-777.15. [10.22331/q-2022-08-17-777]
Abstract:
We propose and assess an alternative quantum generator architecture in the context of generative adversarial learning for Monte Carlo event generation, used to simulate particle physics processes at the Large Hadron Collider (LHC). We validate this methodology by implementing the quantum network on artificial data generated from known underlying distributions. The network is then applied to Monte Carlo-generated datasets of specific LHC scattering processes. The new quantum generator architecture leads to a generalization of the state-of-the-art implementations, achieving smaller Kullback-Leibler divergences even with shallow-depth networks. Moreover, the quantum generator successfully learns the underlying distribution functions even if trained with small training sample sets; this is particularly interesting for data augmentation applications. We deploy this novel methodology on two different quantum hardware architectures, trapped-ion and superconducting technologies, to test its hardware-independent viability.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
Quantum Physics; Quantum Physics; Computer Science - Learning; High Energy Physics - Phenomenology
Elenco autori:
C. Bravo-Prieto, J. Baglio, M. Cè, A. Francis, D.M. Grabowska, S. Carrazza
Autori di Ateneo:
CARRAZZA STEFANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/936098
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/936098/2059864/q-2022-08-17-777.pdf
Progetto:
Proton strucure for discovery at the Large Hadron Collider (NNNPDF)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici

Settore PHYS-02/A - Fisica teorica delle interazioni fondamentali, modelli, metodi matematici e applicazioni
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0