Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Heterogeneous data integration methods for patient similarity networks

Articolo
Data di Pubblicazione:
2022
Citazione:
Heterogeneous data integration methods for patient similarity networks / J. Gliozzo, M. Mesiti, M. Notaro, A. Petrini, A. Patak, A. Puertas-Gallardo, A. Paccanaro, G. Valentini, E. Casiraghi. - In: BRIEFINGS IN BIOINFORMATICS. - ISSN 1467-5463. - 23:4(2022 Jun 13), pp. bbac207.1-bbac207.26. [10.1093/bib/bbac207]
Abstract:
Patient similarity networks (PSNs), where patients are represented as nodes and their similarities as weighted edges, are being increasingly used in clinical research. These networks provide an insightful summary of the relationships among patients and can be exploited by inductive or transductive learning algorithms for the prediction of patient outcome, phenotype and disease risk. PSNs can also be easily visualized, thus offering a natural way to inspect complex heterogeneous patient data and providing some level of explainability of the predictions obtained by machine learning algorithms. The advent of high-throughput technologies, enabling us to acquire high-dimensional views of the same patients (e.g. omics data, laboratory data, imaging data), calls for the development of data fusion techniques for PSNs in order to leverage this rich heterogeneous information. In this article, we review existing methods for integrating multiple biomedical data views to construct PSNs, together with the different patient similarity measures that have been proposed. We also review methods that have appeared in the machine learning literature but have not yet been applied to PSNs, thus providing a resource to navigate the vast machine learning literature existing on this topic. In particular, we focus on methods that could be used to integrate very heterogeneous datasets, including multi-omics data as well as data derived from clinical information and medical imaging.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
biomedical applications; data fusion; multimodal data; patient similarity networks
Elenco autori:
J. Gliozzo, M. Mesiti, M. Notaro, A. Petrini, A. Patak, A. Puertas-Gallardo, A. Paccanaro, G. Valentini, E. Casiraghi
Autori di Ateneo:
CASIRAGHI ELENA ( autore )
MESITI MARCO ( autore )
VALENTINI GIORGIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/930904
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/930904/2043055/bbac207.pdf
Progetto:
PIANO DI SOSTEGNO ALLA RICERCA 2015-2017 - TRANSITION GRANT LINEA 1A PROGETTO "UNIMI PARTENARIATI H2020" (anno 2020)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (4)


Settore INF/01 - Informatica

Settore MED/01 - Statistica Medica

Settore INFO-01/A - Informatica

Settore MEDS-24/A - Statistica medica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0