Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Molecular Similarity Perception Based on Machine-Learning Models

Articolo
Data di Pubblicazione:
2022
Citazione:
Molecular Similarity Perception Based on Machine-Learning Models / E. Gandini, G. Marcou, F. Bonachera, A. Varnek, S. Pieraccini, M. Sironi. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 23:11(2022 Jun), pp. 6114.1-6114.11. [10.3390/ijms23116114]
Abstract:
Molecular similarity is an impressively broad topic with many implications in several areas of chemistry. Its roots lie in the paradigm that ‘similar molecules have similar properties’. For this reason, methods for determining molecular similarity find wide application in pharmaceutical companies, e.g., in the context of structure-activity relationships. The similarity evaluation is also used in the field of chemical legislation, specifically in the procedure to judge if a new molecule can obtain the status of orphan drug with the consequent financial benefits. For this procedure, the European Medicines Agency uses experts’ judgments. It is clear that the perception of the similarity depends on the observer, so the development of models to reproduce the human perception is useful. In this paper, we built models using both 2D fingerprints and 3D descriptors, i.e., molecular shape and pharmacophore descriptors. The proposed models were also evaluated by constructing a dataset of pairs of molecules which was submitted to a group of experts for the similarity judgment. The proposed machine-learning models can be useful to reduce or assist human efforts in future evaluations. For this reason, the new molecules dataset and an online tool for molecular similarity estimation have been made freely available.
Tipologia IRIS:
01 - Articolo su periodico
Keywords:
molecular similarity; similarity perception; machine learning; chemical data set
Elenco autori:
E. Gandini, G. Marcou, F. Bonachera, A. Varnek, S. Pieraccini, M. Sironi
Autori di Ateneo:
PIERACCINI STEFANO ( autore )
SIRONI MAURIZIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/929906
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/929906/2039486/ijms-23-06114.pdf
Progetto:
Piano Sviluppo Unimi - Linea 3 - Bando SOE 2020 - Progetto ICEFree
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore CHIM/02 - Chimica Fisica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0