Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Nonstochastic Bandits and Experts with Arm-Dependent Delays

Contributo in Atti di convegno
Data di Pubblicazione:
2022
Citazione:
Nonstochastic Bandits and Experts with Arm-Dependent Delays / D. VAN DER HOEVEN, N. Cesa Bianchi (PROCEEDINGS OF MACHINE LEARNING RESEARCH). - In: International Conference on Artificial Intelligence and Statistics / [a cura di] G. Camps-Valls, F.J.R. Ruiz, I. Valera. - [s.l] : PMLR, 2022. - pp. 2022-2044 (( convegno International Conference on Artificial Intelligence and Statistics tenutosi a virtual nel 20222.
Abstract:
We study nonstochastic bandits and experts in a delayed setting where delays depend on both time and arms. While the setting in which delays only depend on time has been extensively studied, the arm-dependent delay setting better captures real-world applications at the cost of introducing new technical challenges. In the full information (experts) setting, we design an algorithm with a first-order regret bound that reveals an interesting trade-off between delays and losses. We prove a similar first-order regret bound also for the bandit setting, when the learner is allowed to observe how many losses are missing. Our bounds are the first in the delayed setting that only depend on the losses and delays of the best arm. In the bandit setting, when no information other than the losses is observed, we still manage to prove a regret bound for bandits through a modification to the algorithm of Zimmert and Seldin (2020). Our analyses hinge on a novel bound on the drift, measuring how much better an algorithm can perform when given a look-ahead of one round.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
D. VAN DER HOEVEN, N. Cesa Bianchi
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/939310
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/939310/2072630/van-der-hoeven22a.pdf
Titolo del libro:
International Conference on Artificial Intelligence and Statistics
Progetto:
European Learning and Intelligent Systems Excellence (ELISE)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0