Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning

Articolo
Data di Pubblicazione:
2022
Citazione:
Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning / M. Lee, L.R.D. Sanz, A. Barra, A. Wolff, J.O. Nieminen, M. Boly, M.C.E. Rosanova, S. Casarotto, O. Bodart, J. Annen, A. Thibaut, R. Panda, V. Bonhomme, M. Massimini, G. Tononi, S. Laureys, O. Gosseries, S. Lee. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 13:(2022 Feb 25), pp. 1064.1-1064.14. [10.1038/s41467-022-28451-0]
Abstract:
Consciousness can be defined by two components: arousal (wakefulness) and awareness (subjective experience). However, neurophysiological consciousness metrics able to disentangle between these components have not been reported. Here, we propose an explainable consciousness indicator (ECI) using deep learning to disentangle the components of consciousness. We employ electroencephalographic (EEG) responses to transcranial magnetic stimulation under various conditions, including sleep (n = 6), general anesthesia (n = 16), and severe brain injury (n = 34). We also test our framework using resting-state EEG under general anesthesia (n = 15) and severe brain injury (n = 34). ECI simultaneously quantifies arousal and awareness under physiological, pharmacological, and pathological conditions. Particularly, ketamine-induced anesthesia and rapid eye movement sleep with low arousal and high awareness are clearly distinguished from other states. In addition, parietal regions appear most relevant for quantifying arousal and awareness. This indicator provides insights into the neural correlates of altered states of consciousness.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
M. Lee, L.R.D. Sanz, A. Barra, A. Wolff, J.O. Nieminen, M. Boly, M.C.E. Rosanova, S. Casarotto, O. Bodart, J. Annen, A. Thibaut, R. Panda, V. Bonhomme, M. Massimini, G. Tononi, S. Laureys, O. Gosseries, S. Lee
Autori di Ateneo:
CASAROTTO SILVIA ( autore )
MASSIMINI MARCELLO ( autore )
ROSANOVA MARIO CARMINE EMILIANO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/913294
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/913294/2078334/s41467-022-28451-0.pdf
Progetto:
A Multimodal Approach to Personalized Tracking of Evolving State-Of-Consciousness in Brain-Injured Patients (PerBrain)
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore BIO/09 - Fisiologia

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0