Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data

Articolo
Data di Pubblicazione:
2021
Citazione:
Deep denoising for multi-dimensional synchrotron X-ray tomography without high-quality reference data / A.A. Hendriksen, M. Buhrer, L. Leone, M. Merlini, N. Vigano, D.M. Pelt, F. Marone, M. di Michiel, K.J. Batenburg. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 11:1(2021 Jun 04), pp. 11895.1-11895.13. [10.1038/s41598-021-91084-8]
Abstract:
Synchrotron X-ray tomography enables the examination of the internal structure of materials at submicron spatial resolution and subsecond temporal resolution. Unavoidable experimental constraints can impose dose and time limits on the measurements, introducing noise in the reconstructed images. Convolutional neural networks (CNNs) have emerged as a powerful tool to remove noise from reconstructed images. However, their training typically requires collecting a dataset of paired noisy and high-quality measurements, which is a major obstacle to their use in practice. To circumvent this problem, methods for CNN-based denoising have recently been proposed that require no separate training data beyond the already available noisy reconstructions. Among these, the Noise2Inverse method is specifically designed for tomography and related inverse problems. To date, applications of Noise2Inverse have only taken into account 2D spatial information. In this paper, we expand the application of Noise2Inverse in space, time, and spectrum-like domains. This development enhances applications to static and dynamic micro-tomography as well as X-ray diffraction tomography. Results on real-world datasets establish that Noise2Inverse is capable of accurate denoising and enables a substantial reduction in acquisition time while maintaining image quality.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
A.A. Hendriksen, M. Buhrer, L. Leone, M. Merlini, N. Vigano, D.M. Pelt, F. Marone, M. di Michiel, K.J. Batenburg
Autori di Ateneo:
MERLINI MARCO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/910433
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/910433/1987001/s41598-021-91084-8.pdf
Progetto:
Dipartimenti di Eccellenza 2018-2022 - Dipartimento di SCIENZE DELLA TERRA "ARDITO DESIO"
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore GEO/06 - Mineralogia
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0