Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG / G. Luongo, S. Schuler, M.W. Rivolta, O. Dossel, R. Sassi, A. Loewe - In: 2021 Computing in Cardiology (CinC)[s.l] : IEEE, 2021. - ISBN 978-1-6654-7916-5. - pp. 1-4 (( Intervento presentato al 48. convegno Computing in Cardiology (CinC) tenutosi a Brno nel 2021 [10.23919/CinC53138.2021.9662849].
Abstract:
Atrial flutter (AFl) is a common heart rhythm disorder driven by different self-sustaining electrophysiological atrial mechanisms. In this work, we tried to automatically distinguish the macro-mechanism sustaining the arrhythmia in an individual patient using the non-invasive 12-lead electrocardiogram (ECG). We implemented a concurrent clustering and classification algorithm (CCC) to discriminate the clinical classes and look for potential similarities between patient features in each class, thus suggesting that these patients would require a similar treatment. The CCC performance was then compared to a standard supervised technique (K-nearest neighbor, KNN). 3-class classification (macro-reentry right atrium, macro-reentry left atrium, and others) achieved 48.3% and 72.0% CCC and KNN accuracy, respectively. 4-class classification (tri-cuspidal reentry, mitral reentry, fig-8 macro-reentry, and others) achieved 41.6% and 71.2% CCC and KNN accuracy, respectively. Our results show that a clustering approach does not improve the performance of AFl classification because the semi-supervised method leads to clusters that are strongly overlapping between the different ground truth classes. In contrast, the supervised learning approach shows potential for the classification, although constrained by the complexity and the multiple variables that influence the underlying mechanisms.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
G. Luongo, S. Schuler, M.W. Rivolta, O. Dossel, R. Sassi, A. Loewe
Autori di Ateneo:
RIVOLTA MASSIMO WALTER ( autore )
SASSI ROBERTO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/906940
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/906940/1978525/CinC2021-112.pdf
Titolo del libro:
2021 Computing in Cardiology (CinC)
Progetto:
MutlidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore INF/01 - Informatica

Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0