Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

Beyond Bandit Feedback in Online Multiclass Classification

Contributo in Atti di convegno
Data di Pubblicazione:
2021
Citazione:
Beyond Bandit Feedback in Online Multiclass Classification / D. van der Hoeven, F. Fusco, N. Cesa Bianchi (ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS). - In: Advances in Neural Information Processing Systems / [a cura di] M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, J. Wortman Vaughan. - [s.l] : Curran Associates, 2021. - ISBN 9781713845393. - pp. 13280-13291 (( Intervento presentato al 34. convegno Neural Information Processing Systems tenutosi a virtual nel 2021.
Abstract:
We study the problem of online multiclass classification in a setting where the learner’s feedback is determined by an arbitrary directed graph. While including bandit feedback as a special case, feedback graphs allow a much richer set of applications, including filtering and label efficient classification. We introduce GAPPLETRON, the first online multiclass algorithm that works with arbitrary feed- back graphs. For this new algorithm, we prove surrogate regret bounds that hold, both in expectation and with high probability, for a large class of surrogate losses. Our bounds are of order B√ρKT , where B is the diameter of the prediction space, K is the number of classes, T is the time horizon, and ρ is the domination number (a graph-theoretic parameter affecting the amount of exploration). In the full in- formation case, we show that GAPPLETRON achieves a constant surrogate regret of order B2K. We also prove a general lower bound of order max {B2K, √T } showing that our upper bounds are not significantly improvable. Experiments on synthetic data show that for various feedback graphs our algorithm is competitive against known baselines.
Tipologia IRIS:
03 - Contributo in volume
Elenco autori:
D. van der Hoeven, F. Fusco, N. Cesa Bianchi
Autori di Ateneo:
CESA BIANCHI NICOLO' ANTONIO ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/906093
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/906093/1976353/NeurIPS-2021-beyond-bandit-feedback-in-online-multiclass-classification-Paper.pdf
Titolo del libro:
Advances in Neural Information Processing Systems
Progetto:
European Learning and Intelligent Systems Excellence (ELISE)
  • Aree Di Ricerca

Aree Di Ricerca

Settori


Settore INF/01 - Informatica
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0