Skip to Main Content (Press Enter)

Logo UNIMI
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione

Expertise & Skills
Logo UNIMI

|

Expertise & Skills

unimi.it
  • ×
  • Home
  • Persone
  • Attività
  • Ambiti
  • Strutture
  • Pubblicazioni
  • Terza Missione
  1. Pubblicazioni

reString: an open-source Python software to perform automatic functional enrichment retrieval, results aggregation and data visualization

Articolo
Data di Pubblicazione:
2021
Citazione:
reString: an open-source Python software to perform automatic functional enrichment retrieval, results aggregation and data visualization / S. Manzini, M. Busnelli, A. Colombo, E. Franchi, P. Grossano, G. Chiesa. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 11:1(2021 Dec 06), pp. 23458.1-23458.15. [10.1038/s41598-021-02528-0]
Abstract:
Functional enrichment analysis is an analytical method to extract biological insights from gene expression data, popularized by the ever‐growing application of high‐throughput techniques. Typically, expression profiles are generated for hundreds to thousands of genes/proteins from samples belonging to two experimental groups, and after ad‐hoc statistical tests, researchers are left with lists of statistically significant entities, possibly lacking any unifying biological theme. Functional enrichment tackles the problem of putting overall gene expression changes into a broader biological context, based on pre‐existing knowledge bases of reference: database collections of known expression regulation, relationships and molecular interactions. STRING is among the most popular tools, providing both protein–protein interaction networks and functional enrichment analysis for any given set of identifiers. For complex experimental designs, manually retrieving, interpreting, analyzing and abridging functional enrichment results is a daunting task, usually performed by hand by the average wet‐biology researcher. We have developed reString, a cross‐platform software that seamlessly retrieves from STRING functional enrichments from multiple user‐supplied gene sets, with just a few clicks, without any need for specific bioinformatics skills. Further, it aggregates all findings into human‐readable table summaries, with built‐in features to easily produce user‐customizable publication‐grade clustermaps and bubble plots. Herein, we outline a complete reString protocol, showcasing its features on a real use‐case.
Tipologia IRIS:
01 - Articolo su periodico
Elenco autori:
S. Manzini, M. Busnelli, A. Colombo, E. Franchi, P. Grossano, G. Chiesa
Autori di Ateneo:
BUSNELLI MARCO ( autore )
CHIESA GIULIA MARIA CAROLA ( autore )
COLOMBO ALICE ( autore )
FRANCHI ELSA ( autore )
Link alla scheda completa:
https://air.unimi.it/handle/2434/889044
Link al Full Text:
https://air.unimi.it/retrieve/handle/2434/889044/1929094/s41598-021-02528-0.pdf
Progetto:
Personalized diagnostics and treatment of high risk coronary artery disease patients
  • Aree Di Ricerca

Aree Di Ricerca

Settori (2)


Settore BIO/14 - Farmacologia

Settore BIO/16 - Anatomia Umana
  • Informazioni
  • Assistenza
  • Accessibilità
  • Privacy
  • Utilizzo dei cookie
  • Note legali

Realizzato con VIVO | Progettato da Cineca | 25.11.5.0